

Review Article | ISSN (0): 3048-6955

DOI: 10.47857/irjmeds.2024.v01i03.014

Liquid Biopsies in Oncology: The Future of Non-Invasive **Cancer Detection**

Pranav Kumar Prabhakar^{1*}, Nikita Paliya^{2,3}, Vikas Malik³, Kusum Sharma³

¹Research and Development Cell, Institute of Applied Sciences, Parul University, Vadodara, Gujarat-391760, India, ²Integrated Institute of Medical and Health Sciences, Delhi, India, 3V Mags Global EduTech, New Delhi, India. *Corresponding Author's Email: prabhakar.iitm@gmail.com

Abstract

Liquid biopsies represent a paradigm shift in the field of oncology, offering a transformative approach to cancer detection, monitoring, and treatment planning. Unlike traditional tissue biopsies, liquid biopsies provide a comprehensive dynamic, and non-invasive method to analyze tumor-derived biomarkers such as circulating tumor DNA (ctDNA), circulating tumor cells (CTCs) and exosomes from body fluids. This innovation addresses the limitations of conventional diagnostics, including invasiveness, sampling bias, and the inability to capture tumor heterogeneity. With rapid advancements in technologies such as digital PCR, liquid biopsies and next-generation sequencing (NGS) have become increasingly sensitive, specific, and clinically actionable. Current article delivers an in-depth exploration of the principles, applications, and benefits of liquid biopsies, alongside a critical analysis of their challenges and limitations. By highlighting recent breakthroughs and future directions, we underscore the immense potential of liquid biopsies to revolutionize precision oncology, improve patient outcomes, and redefine the landscape of cancer care.

Keywords: Cancer, ctDNA, Heterogeneity, Liquid Biopsies, Oncology, Tumor.

Introduction

Cancer remnants a foremost cause of death worldwide, presenting an immense burden on healthcare systems and society. With a projected 19.3 million new cases and approximately 10 million cancer-related deaths annually, early detection and effective management are critical to reducing mortality and improving patient outcomes (1). Traditional diagnostic approaches, particularly tissue biopsies, have long been the gold standard for tumor characterization and staging. However, these procedures are invasive, often painful, and restricted in their capability to arrest the dynamic and heterogeneous nature of tumors. Furthermore, repeated biopsies for monitoring purposes are impractical and carry additional risks such as infection or complications from surgery.

Liquid biopsies have emerged as a groundbreaking alternative, offering a minimally invasive method to analyze tumors through biomarkers exist in bodily fluids such as blood, urine, and saliva. This approach enables real-time intuitions into the genetic and molecular makeup of cancers, addressing many of the limitations posed by tissue biopsies. Liquid biopsies are not only less burdensome for patients but also provide a broader and more comprehensive picture of tumor heterogeneity, capturing information multiple metastatic sites that may be inaccessible through traditional biopsy methods.

Theoretical foundations for liquid biopsies can be traced back to the early recognition of circulating tumor cells (CTCs) in the bloodstream. In 1869, Australian physician Thomas Ashworth observed cells in the blood of a cancer patient that resembled those in the primary tumor (2). This discovery laid the groundwork for understanding the systemic nature of cancer and its potential to spread through the circulatory system. Throughout the 20th century, improvements in molecular biology and genomics enabled the identification of circulating tumor DNA (ctDNA) and other tumorderived components in bodily fluids (3). These findings were pivotal in shaping the modern concept of liquid biopsies as a diagnostic tool.

The advent of technologies such as polymerase chain reaction (PCR) in the 1980s and nextgeneration sequencing (NGS) in the early 21st

This is an Open Access article distributed under the terms of the Creative Commons Attribution CC BY license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(Received 17th September 2024; Accepted 25th November 2024; Published 30th November 2024)

century provided the technical capabilities to detect and analyze these biomarkers unprecedented precision (4). Coupled with advancements in bioinformatics and computational liquid biopsies biology, transitioned from theoretical possibility to practical reality. The integration of multi-omics approaches and high-throughput platforms has further accelerated their development, enabling a more detailed understanding of tumor biology and its dynamic changes over time.

The field of liquid biopsies leverages advanced technologies such as NGS, digital PCR, and bioinformatics tools to detect and analyze CTCs, cell-free DNA (cfDNA), exosomes, and other biomarkers. These technologies have rapidly evolved, enhancing the compassion and specificity of liquid biopsies, making them an increasingly viable option for clinical use. As a result, liquid biopsies are being explored for a wide range of applications, from early cancer detection and treatment monitoring to assessing minimal (MRD) residual disease and managerial personalized therapies.

This article delves into the principles underlying

liquid biopsies, their current and potential applications in oncology, and the advantages they offer over conventional methods. Additionally, it discusses the challenges and limitations that must be addressed for their widespread adoption and highlights the technological advancements flagging the way for the future of cancer diagnostics and care. The transformative potential of liquid biopsies locations them at the vanguard of precision oncology, promising to revolutionize how cancer is detected, treated, and monitored. Liquid biopsies offer promising advancements in cancer detection and management, leveraging ctDNA, CTCs and exosomes as biomarkers. The ctDNA might be identified in over 75% of patients with advanced cancers and 50% of patients with localized tumors (5). This highlights the prospective of ctDNA as a biomarker for earlystage cancer detection but the detection rate for ctDNA in early-stage cancers is lower compared to advanced stages, thus limiting its utility in broad population screening (5). Previously it was reported that the existence of CTCs in metastatic breast cancer patients was strongly connected with poor prognosis and shorter progression-free survival (PFS, 6). However the clinical application

of CTCs is limited by their rarity in the bloodstream, making detection and analysis technically challenging and expensive. Some researcher demonstrated that changes in ctDNA levels correlated more closely with treatment response than traditional biomarkers like CA 15-3 in breast cancer despite requiring frequent sampling and high-sensitivity assays, which may not be feasible in all clinical settings (7). Studies have emphasized that liquid biopsies could capture tumor heterogeneity by identifying mutations from multiple metastatic sites in patients with advanced cancer (8). However these findings are limited by its variability to detect all relevant mutations, and some subclonal mutations may be missed. A study by Kahlert et al. showed that exosomes contain tumor-specific RNA and DNA, providing a promising avenue for noninvasive tumor profiling although isolation and analysis of exosome remain technically complex, with challenges in differentiating tumor-derived exosomes from those instigating from normal cells (9). Several studies have explored ctDNA for MRD detection, predicting relapse in non-small cell lung cancer patients, though sensitivity varies with the tumor's shedding rate and ctDNA's abundance, which may vary widely among patients (10, 11). These findings underscore the potential and limitations of liquid biopsies in revolutionizing oncology.

Key Biomarkers in Liquid Biopsies

Key biomarkers in liquid biopsies include CTCs, ctDNA, exosomes, and microRNAs (miRNAs), each offering unique insights into cancer biology. CTCs shack from primary or metastatic tumors into the bloodstream, and can deliver intuitions into tumor biology. The characterization and detection of CTCs enable real-time monitoring of cancer progression and treatment response. ctDNA, comprising tumor-derived DNA circulating in the blood, provides a genetic landscape of tumors, aiding in mutation profiling and monitoring (12, treatment efficacy 13). Exosomes, extracellular vesicles released by tumor cells, containing DNA, RNA, and proteins, serving as a rich source of information about the tumor's molecular profile. Meanwhile, miRNAs, small noncoding RNAs stable in body fluids, show promise as

biomarkers for cancer diagnosis and prognosis (14).

Applications in Oncology

Liquid biopsies have numerous applications in oncology, revolutionizing cancer management across various stages. They enable early cancer detection, often identifying the disease before symptoms arise, significantly improving the chances of successful treatment. By tracking changes in biomarker levels, liquid biopsies enable dynamic assessment of treatment response and disease progression. They are also highly sensitive in identifying MRD, helping to predict relapse and guide adjuvant therapy decisions. Additionally, Liquid biopsies facilitate the identification of actionable mutations, enabling tailored therapeutic interventions.

Advantages of Liquid Biopsies

Liquid biopsies provide numerous compensations over old-fashioned diagnostic methods. transforming oncology with their innovative approach. Liquid biopsies involve only a simple blood draw, eliminating the need for intrusive techniques such as surgical or needle biopsies. This reduces patient discomfort, lowers the risk of complications, and facilitates repeat testing. By detecting tumor-derived biomarkers in the bloodstream, liquid biopsies can recognize cancer at an earlier stage when treatment is more likely to be effective. This is especially critical for cancers that lack specific symptoms in their initial stages. Liquid biopsies enable continuous monitoring of the tumor's molecular profile throughout treatment. This dynamic assessment allows clinicians to track treatment responses, detect emerging resistance, and adjust therapies accordingly, leading to more personalized and effective care. Unlike tissue biopsies, which sample a single region of the tumor, liquid biopsies provide a more comprehensive picture by capturing genetic material from multiple tumor sites. This holistic view helps in understanding tumor heterogeneity and guiding precision medicine approaches with the ability to identify specific mutations, liquid biopsies empower oncologists to match patients with targeted therapies or immunotherapies that are most likely to be effective, avoiding the trial-and-error approach often associated with cancer treatment. Liquid biopsies can identify traces of cancer that

remain after treatment, even when imaging techniques fail to detect residual disease. This helps in early prediction of relapse and timely intervention. For patients who cannot undergo invasive procedures due to age, comorbidities, or tumor location, liquid biopsies provide a feasible and effective alternative. This broadens the scope of diagnostic testing and ensures more patients have access to advanced care. While initial liquid biopsy tests may be expensive, their ability to reduce the need for repeated invasive procedures, hospital stays, and complications ultimately leads to cost savings in long-term cancer management. Liquid biopsies offer invaluable insights into the biology of tumors and their evolution, accelerating the progress of new drugs and therapeutic strategies. They also facilitate patient stratification in clinical trials, improving the efficiency of research efforts.

Challenges and Limitations

Despite their transformative prospective, liquid biopsies meet several challenges that need to be addressed for widespread clinical adoption. One major hurdle is ensuring sensitivity and specificity, as detecting low levels of tumor-derived biomarkers, especially in early-stage cancers, remains a formidable challenge. The presence of non-tumor DNA or RNA fragments in the bloodstream can lead to false positives or negatives, affecting diagnostic accuracy. Tumor heterogeneity also presents a challenge, while liquid biopsies provide a snapshot of circulating biomarkers, they may not fully arrest the complexity of tumor heterogeneity or the spatial and temporal dynamics of cancer evolution. This limitation can complicate treatment decisions. Standardization of sample collection, processing, and analysis is essential to ensure reliable results across different laboratories and clinics, but variability remains a concern. Advanced technologies, such as next-generation sequencing, remain expensive, limiting their accessibility in resource-constrained settings. This cost barrier may prevent widespread adoption, particularly in low- and middle-income countries. Liquid biopsy tests must undergo rigorous validation to ensure clinical utility and compliance with regulatory standards. Delays in regulatory approval processes can hinder the timely introduction of these tests into clinical practice. Some cancers, such as brain tumors, also present difficulties in biomarker

detection due to the blood-brain barrier. Liquid biopsies are not yet a standalone diagnostic tool and are often used in conjunction with imaging and tissue biopsies. Integrating liquid biopsies into existing diagnostic workflows requires careful alignment to avoid redundancy or missed information. Lastly, ethical and data privacy concerns regarding the use of genomic data from liquid biopsies raise important issues around patient consent and data security, requiring careful attention as these technologies expand.

Technological Advancements

The field of liquid biopsies is advancing rapidly due to breakthroughs in multiple technologies. NGS has become a cornerstone, enabling high-throughput and precise analysis of genetic mutations and alterations. Digital PCR has further increased sensitivity, permitting for the detection of rare mutations present in minute quantities of ctDNA. Microfluidics-based platforms have revolutionized the separation and classification of CTCs and extracellular vesicles, providing detailed insights tumor biology. Integrating artificial intelligence (AI) and machine learning (ML) algorithms into liquid biopsy workflows has improved data interpretation, enhancing the ability to identify patterns and predict outcomes. These advancements are making liquid biopsies more robust, scalable, and clinically actionable, paving the way for their routine adoption in personalized medicine.

Future Directions

Future directions for liquid biopsies focus on expanding their clinical utility and overcoming current challenges to revolutionize cancer care. Efforts are underway to establish standardized protocols for liquid biopsy sample collection, processing, and interpretation to confirm reproducibility and clinical reliability. Merging multiple omics layers—genomics, proteomics, transcriptomics, and metabolomics—is enhancing the depth and breadth of tumor profiling, providing additional holistic outlook of cancer biology. Expanding the application of liquid biopsies to diagnose rare cancers and detect cancers at the earliest possible stage will increase survival rates and reduce treatment burdens. Additionally, advancements in real-time immune monitoring could optimize immunotherapy regimens by assessing patient-specific immune responses. To ensure global accessibility, research is focused on creating cost-effective platforms, making liquid biopsies feasible for low- and middle-income countries. Liquid biopsies are estimated to play a pivotal role in accelerating clinical trials by enabling the rapid identification of eligible patients and monitoring therapy effectiveness with minimal invasiveness.

Conclusion

Liquid biopsies represent a paradigm shift in oncology, offering a non-intrusive, rapid, and wideranging approach to cancer management. They hold significant potential for enlightening early detection rates, controlling personalized treatment strategies, and empowering real-time observing of disease advancement. By addressing the boundaries of old-fashioned tissue biopsies, liquid biopsies promise to enhance the accuracy and efficiency of cancer diagnostics. However, to fully realize their potential, challenges such as standardization, cost reduction, and biomarker validation must be overcome. As research progresses, liquid biopsies are anticipated to play an integral role in advancing precision medicine, enlightening patient outcomes, and renovating the landscape of cancer care. Their ability to provide detailed perceptions into tumor biology without invasive procedures not only enhances patient quality of life but also facilitates the development of more effective, targeted therapies. The future of oncology is undeniably intertwined with the continued evolution of liquid biopsy technology, marking a new era in cancer diagnosis and treatment.

Abbreviations

CTCs: Circulating tumor cells, ctDNA: Circulating tumor DNA, NGS: Next-generation sequencing, miRNAs: microRNAs, MRD: Minimal residual disease.

Acknowledgment

None

Author Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Pranav Kumar Prabhakar and Nikita Paliya. The first draft of the manuscript was written by Pranav Kumar Prabhakar and all authors commented on previous

versions of the manuscript. All authors read and approved the final manuscript.

Conflict of Interest

Authors declare no conflict of interest.

Ethics Approval

Not applicable.

Funding

No funding sources from government or non-government organizations.

References

- Dafni MF, Shih M, Manoel AZ, Yousif MY, Spathi S, Harshal C, Bhatt G, Chodnekar SY, Chune NS, Rasool W, Umar TP. Empowering cancer prevention with AI: unlocking new frontiers in prediction, diagnosis, and intervention. Cancer Causes & Control. 2024 Dec 13:1-5.
- Salsbury AJ. The significance of the circulating cancer cell. Cancer Treatment Reviews. 1975 Mar 1;2(1):55-72
- 3. Allen TA. The Role of Circulating Tumor Cells as a Liquid Biopsy for Cancer: Advances, Biology, Technical Challenges, and Clinical Relevance. Cancers. 2024 Mar 31;16(7):1377.
- 4. Kazim I, Gande T, Reyher E, Bhutia KG, Dhingra K, Verma S. Advancements in sequencing technologies:: from genomic revolution to single-cell insights in precision medicine. Journal of Knowledge Learning and Science Technology. 2024 Dec 25;3(4):108-24.
- 5. Bettegowda C. Detection of circulating tumor DNA in early- and late-stage human malignancies. Science Translational Medicine. 2014;6(224):224ra24.
- 6. Cristofanilli M. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. New England Journal of Medicine.2004;351(8):781-791.
- 7. Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-

- Araujo B, Rajan S. Analysis of circulating tumor DNA to monitor metastatic breast cancer. New England Journal of Medicine. 2013 Mar 28;368(13):1199-209
- Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin SF, Kingsbury Z, Wong AS, Marass F. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013 May 2;497(7447):108-12.
- Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, Zhang J, Weitz J, Chin L, Futreal A, Kalluri R. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. Journal of Biological Chemistry. 2014 Feb 14;289(7):3869-75.
- 10. Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, Le Quesne J, Moore DA, Veeriah S, Rosenthal R, Marafioti T. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017 May 25;545(7655):446-51.
- 11. Paliya N, Deoghare C, Exploring the pharmacological potential of Red Sindhi Cow urine: An in vivo approach. IP Int J Med Microbiol Trop Dis 2024;10(4):324-328.
- 12. Sharma K, Sharma V. Allium sativum Essential Oil Supplementation Reverses the Hepatic Inflammation, Genotoxicity and Apoptotic Effects in Swiss Albino Mice Intoxicated with the Lead Nitrate. Biological Trace Element Research. 2024 Jul;202(7):3258-3277.
- 13. Pandit, Nikita, Deoghare, Chetana and Chaudhury, Sujoy K. A review on the green chemistry perspective of multipurpose use of cow urine. Pure and Applied Chemistry. 2024;96(10):1499-1522.
- 14. Sharma K, Sharma V. Assessment of chemical constituents of Allium sativum essential oil extracted by using hydrodistillation technique and their pharmacological potential. Journal of Natural Remedies. 2023 Aug 31:977-92.