

DOI: 10.47857/irjmeds.2025.v02i01.022 **Review Article | ISSN (0): 3048-6955**

Diabetic Retinopathy (DR): The Silent Threat

Kusum Sharma^{1*}, Vikas Malik¹, Alpa Agrawal², Nikita Paliya³

¹V Mags Global EduTech, New Delhi, India, ²Omnicuris Healthcare Pvt. Ltd., Bangalore, Karnataka,, India, ³Innovative Publications Pvt. Ltd., New Delhi, India, India. *Corresponding Author's Email: skusum1399@gmail.com

Abstract

Diabetic retinopathy (DR) is a common yet often undiagnosed complication of diabetes mellitus, leading to vision impairment and potential blindness if left untreated. It is a major cause of vision loss among working-age adults worldwide, with its prevalence increasing alongside the global rise in diabetes. DR results from prolonged hyperglycemia, which damages the small blood vessels of the retina, progressing from mild non-proliferative stages to severe proliferative retinopathy. In advanced stages, complications such as retinal hemorrhage and detachment may occur. Because early DR is typically asymptomatic, routine eye screenings are vital for timely detection. Research has significantly advanced DR management. Anti-VEGF injections have proven effective in reducing macular edema and abnormal vessel growth, while laser photocoagulation remains a standard treatment for advanced cases. Emerging diagnostic technologies, including AI-enhanced retinal imaging and OCT, are improving early detection rates. Despite these advances, prevention is key. Maintaining strict glycemic control, managing blood pressure, and adopting healthy lifestyle habits are critical. This article highlights the causes, risk factors, symptoms, and treatment of DR, while emphasizing the importance of early detection and prevention to protect vision and quality of life.

Keywords: DR, Pathophysiology, Prevention, Risk Factor, Treatment.

Introduction

Diabetes mellitus is a chronic disease affecting multiple organ systems, with one of the most severe complications being Diabetic Retinopathy (DR). DR is a progressive disorder that damages the blood vessels in the retina, leading to vision problems and, in severe cases, complete blindness. Due to its often-asymptomatic nature in the early stages, it is known as the "silent threat." Understanding the risk factors and available interventions is crucial for reducing its burden on affected individuals and healthcare systems. Numerous studies have explored the prevalence, progression, and treatment strategies for DR. Research has consistently demonstrated that poor glycemic control, hypertension, and dyslipidemia are major contributing factors to the onset and severity of the disease. A study by Yau et al., 2012 estimated that nearly one-third of individuals with diabetes develop some forms of DR, highlighting the global magnitude of this condition (1). While laser photocoagulation has been a mainstay treatment for many years, recent advancements in anti-VEGF therapies have revolutionized disease management, significantly improving vision outcomes for affected individuals.

Past research on DR has extensively focused on its epidemiology, pathophysiology, and treatment modalities. A study by Yau et al., 2012 (1) has established the high global prevalence of DR, linking it directly to poor glycemic control and long-term diabetes duration. Similarly, Cheung et al., 2010 reviewed the risk factors associated with DR and emphasized the role of systemic diseases such as hypertension and dyslipidemia in worsening retinal damage (2). Advancements in imaging and diagnostic technologies have also been explored in the literature. Abramoff et al., 2018 in his study introduced artificial intelligence (AI)-based screening techniques, demonstrating their effectiveness in early DR detection (3). However, these technologies remain largely inaccessible in developing countries due to high costs and lack of trained personnel. Similarly, Wong et al., 2016 in his research highlighted the effectiveness of optical coherence tomography (OCT) in diagnosing diabetic macular edema (4), but noted its limited availability in low-resource settings. AI-based screening in healthcare uses machine learning to analyze medical data for early and accurate disease detection. It enhances

This is an Open Access article distributed under the terms of the Creative Commons Attribution CC BY license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(Received 17th November 2024; Accepted 16th January 2025; Published 28th February 2025)

diagnostic speed, accuracy, and accessibility, especially in radiology, ophthalmology, and pathology. Challenges include data privacy, bias, and integration into clinical workflows.

In terms of treatment, laser photocoagulation has been widely studied since the Early Treatment DR Study (ETDRS) in the 1980s, which confirmed its efficacy in reducing vision loss. However, newer studies (5, 6) have demonstrated superior outcomes with anti-VEGF therapy in managing proliferative DR and diabetic macular edema. However Anti- VEGF therapy has few side effects like eye pain, elevated IOP, inflammation, and infection such as endophthalmitis in few cases. Despite these advancements, challenges remain in ensuring widespread access to these treatments, especially for patients in remote or underserved areas. Recent research has also explored the role of inflammation in DR progression. Studies by Nentwich and Ulbig, 2015 have identified oxidative stress and inflammatory cytokines as key contributors to retinal damage (7). This has led to investigations into potential anti-inflammatory therapies, including corticosteroids and emerging biologic treatments. However, the long-term effects and safety of these treatments require further study. Another growing area of interest is the genetic predisposition to DR. Genome-wide association studies (GWAS) conducted by Ding et al., 2012 have identified specific genetic markers linked to an increased risk of severe DR, suggesting that personalized medicine could play a future role in disease management (8). However, the clinical application of genetic findings remains limited, and more research is needed to translate these discoveries into targeted therapies.

A significant research gap exists in the area of preventive strategies and public awareness. Studies have shown that many patients with diabetes do not undergo routine eye examinations, leading to delayed diagnosis and increased risk of severe vision loss. Additionally, disparities in healthcare access mean that low-income and rural populations are disproportionately affected. Further research is needed to evaluate the effectiveness of community-based screening programs and telemedicine approaches in bridging this gap. Moreover, there is a growing interest in the potential role of gene therapy and regenerative medicine, which could offer new hope for reversing retinal damage in advanced DR cases.

The primary objective of this article is to provide a comprehensive overview of DR, including its pathophysiology, risk factors, symptoms, and treatment options. Furthermore, this review underscores the significance of early detection, lifestyle modifications, and emerging technologies in mitigating the impact of DR on affected individuals. By bridging the existing research gaps, this study aims to emphasize the critical need for preventive measures and improved healthcare accessibility to reduce the global burden of DR.

Pathophysiology and Risk Factors

DR develops as a result of chronic hyperglycemia, which leads to structural and functional changes in the retinal microvasculature. The disease is primarily characterized by damage to the endothelial cells of the retinal capillaries, increased vascular permeability, and capillary occlusion. These changes result in ischemia, inflammation, and neovascularization, which progressively impair vision.

Pathophysiology

DR has long been recognized as a microvascular complication of diabetes, primarily driven by chronic hyperglycemia. Elevated glucose levels lead to the accumulation of advanced glycation end-products (AGEs), which contribute to oxidative stress and structural damage in retinal capillaries. Hyperglycemia also induces the activation of various inflammatory pathways, resulting in the release of pro-inflammatory cytokines such as interleukins (IL-1 β , IL-6), TNF- α , and vascular endothelial growth factor (VEGF). These molecules disrupt the blood-retinal barrier, increase capillary permeability, and promote fluid leakage—culminating in diabetic macular edema (DME).

Pericyte loss and endothelial dysfunction further lead to capillary dropout and retinal ischemia. In response, VEGF is upregulated, stimulating abnormal neovascularization. These fragile new vessels are prone to rupture, causing hemorrhage, fibrosis, and, in severe cases, retinal detachment. Therapeutic strategies have targeted these molecular pathways. Anti-VEGF agents (e.g., ranibizumab, aflibercept, bevacizumab) inhibit pathological angiogenesis and reduce edema. Additionally, corticosteroids and emerging therapies like IL-6 inhibitors and gene therapy approaches are under investigation to modulate

inflammation and halt disease progression more effectively.

Risk Factors

A variety of systemic and genetic factors contribute to the progression of DR. The risk of DR increases with the duration of diabetes. Studies show that after 20 years of diabetes, nearly 80% of patients form of DR. Persistent develop some hyperglycemia accelerates retinal vascular damage, making strict blood sugar control critical for prevention. High blood pressure increases the progression of disease by exacerbates retinal micro vascular damage. Elevated cholesterol and triglyceride levels contribute to the formation of hard exudates in the retina, worsening vision impairment. Smoking can cause increase oxidative stress and vascular damage, leading to an increased risk of DR and its progression. Gestational diabetes or preexisting diabetes can lead to rapid DR progression, necessitating more frequent eye screenings during pregnancy. Different Studies suggest that genetic variations play a role in an individual's susceptibility to DR. Diabetic nephropathy is often associated with DR, both conditions share common pathophysiological mechanisms involving microvascular damage. Early identification and management of these risk factors are crucial in preventing disease progression and reducing vision loss associated with DR.

Stages of DR

DR progresses through four distinct stages, each representing an increasing severity of retinal damage. Understanding these stages is essential for timely intervention and preventing irreversible vision loss. There are two stages of DR: Non proliferative and proliferative retinopathy.

Non Proliferative Retinopathy

Non proliferative are three types the earliest stage of DR, characterized by the formation of microaneurysms—small bulges in the retinal blood vessels. These microaneurysms may leak fluid into the retina, leading to mild swelling but typically no noticeable vision loss at this stage,it is known as Mild Non proliferative Retinopathy. As the disease progresses, blood vessels that nourish the retina become blocked. This stage is Moderate Nonproliferative Retinopathy and marked by increased microaneurysms, intraretinal hemorrhages, and hard exudates (lipid and protein

deposits). Patients may begin to experience mild vision disturbances, but the symptoms are often still subtle. Severe Non proliferative Retinopathy: At this stage, a significant number of blood vessels become blocked, cutting off the retina's oxygen supply. This leads to widespread retinal ischemia, resulting in the release of vascular endothelial growth factor (VEGF), which stimulates the growth of new but fragile blood vessels. Vision impairment becomes more noticeable, and there is a heightened risk of progressing to the most severe stage.

Proliferative DR (PDR)

This advanced stage is the most severe form of DR. In response to oxygen deprivation, the retina generates abnormal new blood vessels (neovascularization). These fragile vessels can rupture, leading to vitreous hemorrhage (bleeding into the eye) and, in severe cases, retinal detachment. Without prompt medical intervention, PDR can result in permanent blindness.

Symptoms and Diagnosis

In its early stages, DR is often asymptomatic. As the condition progresses, some symptoms appears, Such as:

Blurred Vision

Due to fluid leakage or swelling in the retina. Dark or Empty Areas in Vision caused by damaged retinal tissue.

Floaters

The presence of dark spots or strings in vision due to bleeding from abnormal blood vessels.

Distorted Vision

Objects may appear wavy or distorted due to macular edema and Sudden.

Vision Loss

In advanced stages, extensive bleeding, retinal detachment, or severe macular damage can cause complete vision loss.

DR is best diagnosed with a comprehensive dilated eye exam. A physician uses special drops to widen the pupils, allowing for a detailed inspection of the retina and blood vessels. Other diagnostic methods are Optical coherence tomography. A test where light waves are used to make detailed images of the retina. This imaging test provides cross-sectional images of the retina to assess retinal thickness and detect swelling caused by fluid accumulation.

Fluorescein Angiography: A fluorescent dye is injected into the bloodstream, highlighting abnormal blood vessel growth, leaks, and blockages under specialized imaging. Tonometry and Visual Acuity Tests: These help assess intraocular pressure and overall vision clarity.

Treatment

While there is no cure for DR, several treatment options help manage and slow its progression by controlling levels through medication, diet, and exercise significantly reduces the risk of disease progression. Different type of therapy used to treat the Such Laser disease. as therapy (Photocoagulation) and Gene and stem cell therapy (Emerging Research). These two types of laser therapy are used Focal laser treatment and pan retinal photocoagulation, in Targets large areas of the retina to shrink abnormal blood vessels and prevent further growth and in Focal Laser Treatment, Seals leaking blood vessels to reduce macular edema. In severe cases, this surgical procedure removes blood and scar tissue from the vitreous humor, reducing traction on the retina and preventing detachment this is known as vitrectomy. Other treatment options are Anti-VEGF Injections: and Corticosteroid Injections: Medications such as ranibizumab, bevacizumab, and aflibercept inhibit vascular endothelial growth factor (VEGF), preventing abnormal blood vessel formation and reducing fluid leakage. Corticosteroid Injections help to reduce retinal inflammation and swelling in cases of diabetic macular edema (DME).

Prevention and Early Intervention

Preventing DR involves a proactive approach to diabetes management and regular eye care. Key preventive strategies are Regular Eye Screenings, Optimal Blood Sugar Management, Blood Pressure and Cholesterol Control, Healthy Lifestyle Choices. Individuals with diabetes should comprehensive eye exams at least once a year to detect early signs of retinopathy. Keeping blood glucose level and blood pressure within the recommended range significantly reduces the risk of DR development and progression. Hypertension patient have high cholesterol issue so they have to control their cholesterol level also by lifestyle modifications such as a low-sodium diet, regular exercise, and prescribed medications, a healthy lifestyle with the help of well-balanced diet rich in antioxidants, omega-3 fatty acids, and vitamins. Smoking is very danger for our health, even smoking exacerbates vascular complications associated with diabetes. Quitting smoking can reduce the risk of DR progression and improve overall health outcomes. By managing other health conditions such as kidney disease and obesity we can control DR. So we can mitigate the risk of DR with Proper health care.

Conclusion

DR remains a significant global health challenge, often leading to irreversible vision loss if not detected early. With diabetes prevalence on the rise, addressing this "silent threat" is more crucial than ever. Early diagnosis through routine eye examinations, strict diabetes control, and timely interventions—such as anti-VEGF injections and laser therapy—are essential in mitigating vision loss. While these treatments can be effective, they may carry side effects like inflammation, vision changes, or rare infections. However, advances in technology, including AIdriven diagnostics, gene therapy, and emerging biomarker-based screening methods, offer new hope in improving early detection and reducing treatment burden. Public health awareness campaigns and patient education programs are vital to ensuring early detection and prevention. By prioritizing eye health as part of diabetes management, individuals can significantly reduce their risk of severe complications, preserving vision and enhancing quality of life.

Abbreviations

AGEs: advanced glycation end-products, DR: Diabetic Retinopathy, DME: Diabetic Macular Edema, ETDRS: Early Treatment DR Study, GWAS: Genome-wide association studies, NPR: Non proliferative Retinopathy, OCT: Optical Coherence Tomography, PDR: Proliferative DR, VEGF: vascular endothelial growth factor.

Acknowledgement

None.

Author Contributions

All authors contributed equally.

Conflict of Interest

Authors declare no conflict of interest.

Ethics Approval

The authors have nothing to report.

Funding

No funding sources from government or non-government organizations.

References

- Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen SJ, Dekker JM, Fletcher A, Grauslund J, Haffner S. Global prevalence and major risk factors of DR. Diabetes care. 2012 Mar 1;35(3):556-64.
- CheungN, Mitchell P, Wong TY. DR. The Lancet. 2010; 376(9735):124-136.
- Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of DR in primary care offices. NPJ digital medicine. 2018 Aug 28;1(1):39.

4. Wong TY, Sun J, Kawasaki R, Ruamviboonsuk P, Gupta N, Lansingh VC, Maia M, Mathenge W, Moreker S, Muqit MM, Resnikoff S. Guidelines on diabetic eye care: the international council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology. 2018 Oct 1;125(10):1608-22.

- 5. Brown DM, Schmidt-Erfurth U, Do DV. Intravitreal aflibercept for diabetic macular edema. Ophthalmology. 2013;120(8): 1654-1662.
- Wells JA, Glassman AR, Ayala AR, Jampol LM, Aiello LP, Antoszyk AN, Arnold-Bush B, Baker CW, Bressler NM, Browning DJ, Elman MJ. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. The New England journal of medicine. 2015 Feb 18;372(13):1193-203.
- Nentwich MM, Ulbig MW. DR-ocular complications of diabetes mellitus. World journal of diabetes. 2015 Apr 4;6(3):489.
- 8. Ding J, Wong TY. Current epidemiology of DR and diabetic macular edema. Current diabetes reports. 2012 Aug; 12:346-54.